Water properties in fern spores: sorption characteristics relating to water affinity, glassy states, and storage stability.
نویسندگان
چکیده
Ex situ conservation of ferns may be accomplished by maintaining the viability of stored spores for many years. Storage conditions that maximize spore longevity can be inferred from an understanding of the behaviour of water within fern spores. Water sorption properties were measured in spores of five homosporeous species of ferns and compared with properties of pollen, seeds, and fern leaf tissue. Isotherms were constructed at 5, 25, and 45 degrees C and analysed using different physicochemical models in order to quantify chemical affinity and heat (enthalpy) of sorption of water in fern spores. Fern spores hydrate slowly but dry rapidly at ambient relative humidity. Low Brunauer-Emmet-Teller monolayer values, few water-binding sites according to the D'Arcy-Watt model, and limited solute-solvent compatibility according to the Flory-Huggins model suggest that fern spores have low affinity for water. Despite the low water affinity, fern spores demonstrate relatively high values of sorption enthalpy (DeltaH(sorp)). Parameters associated with binding sites and DeltaH(sorp) decrease with increasing temperature, suggesting temperature- and hydration-dependent changes in volume of spore macromolecules. Collectively, these data may relate to the degree to which cellular structures within fern spores are stabilized during drying and cooling. Water sorption properties within fern spores suggest that storage at subfreezing temperatures will give longevities comparable with those achieved with seeds. However, the window of optimum water contents for fern spores is very narrow and much lower than that measured in seeds, making precise manipulation of water content imperative for achieving maximum longevity.
منابع مشابه
A Comparative Study of the Solubility and Sorption Properties of Resin Modified Glass Ionomer and a Bioactive Liner
Background and Aim: This study aimed to compare the sorption and solubility properties of ACTIVA BioACTIVE liner and resin modified glass ionomer (RMGI). Materials and Methods: In this in vitro study, a total of 30 samples were fabricated from each liner measuring 15 mm in diameter and 1 mm in thickness according to ISO 2009:4049. They were then divided into 6 subgroups (n=5) to assess th...
متن کاملبررسی جذب آب، حلالیت و ریزسختی سطحی سه نوع کامپوزیت رزینی نانوهیبرید در طول 60 روز ذخیره در آب
Background and Aims: Microhardness, sorption, and solubility are useful predictors of a resin composite’s clinical success. This study aimed to evaluate the effect of 60 days of water storage on the microhardness, sorption, and solubility of 3 commercial nanohybrid resin composites. Materials and Methods: Three nanohybrid composites were evaluated: GC Kalore (GC), Aura (SDI), and G-&aeli...
متن کاملRemoval of copper ions from aqueous solution by tree fern.
Tree fern, an agricultural by-product, was used for the sorptive removal of copper ions from aqueous solution. The experimental data was analysed by Langmuir, Freundlich and Redlich-Peterson isotherms. The equilibrium sorption capacity of copper ions was determined from the Langmuir equation and found to be 11.7 mg/g. A batch sorption model, based on the assumption of the pseudo-second-order me...
متن کاملThermochemical Heat Storage Properties of Co3O4-X wt % Al2O3 and Co3O4-X wt % Y2O3 Composites (X=1, 2, 5, 8, 10)
The effect of Al2O3 (1-10 wt %) and Y2O3 (1-10 wt %) additions on thermochemical heat storage properties of Co3O4/CoO system was investigated by thermogravimetry, XRD, and SEM analyses. Results showed that the addition of Al2O3 to Co3O4 at constant 8 h mechanical activation improved the...
متن کاملRole of Excipients in Moisture Sorption and Physical Stability of Solid Pharmaceutical Formulations
Airaksinen, S.T.T., 2005. Role of excipients in moisture sorption and physical stability of solid pharmaceutical formulations. Dissertationes bioscientiarum molecularium Universitatis Helsingiensis in Viikki, 20/2005, pp. 57, ISBN 952-10-2733-9 (print) ISBN 952-10-2734-7 (pdf) ISSN 1795-7079 The interaction of moisture with pharmaceutical solids is crucial to an understanding of water-based pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of experimental botany
دوره 58 5 شماره
صفحات -
تاریخ انتشار 2007